Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica.

نویسندگان

  • M Robert Michaud
  • Joshua B Benoit
  • Giancarlo Lopez-Martinez
  • Michael A Elnitsky
  • Richard E Lee
  • David L Denlinger
چکیده

The midge, Belgica antarctica Jacobs, is subjected to numerous environmental stressors during its 2-year life cycle on the Antarctic Peninsula, and in response it has evolved a suite of behavioral, physiological, and life-cycle modifications to counter these stressors, but thus far only a limited number of biochemical adaptations have been identified. In this study, we use a metabolomics approach to obtain a broad overview of changes in energy metabolism, amino acids, and polyols in response to three of the midge's major stresses: heat, freezing, and desiccation. Using GC-MS analysis, a total of 75 compounds were identified. Desiccation (50% water loss) elicited the greatest physiological response (as determined by principal components analysis) when compared to untreated controls, with many elevated metabolites from pathways of central carbohydrate metabolism and a decrease in free amino acids. When larvae were frozen (6h at -10 degrees C), alanine and aspartate increased as well as urea. Freezing also increased three polyols (glycerol, mannitol, erythritol), while desiccation increased only two polyols (glycerol, erythritol). Heating the midges for 1h at 30 degrees C elevated alpha-ketoglutarate and putrescine while suppressing glycerol, glucose, and serine levels. Freezing and desiccation elicited elevation of four shared metabolites, whereas no shared metabolites were elevated by heat. All three treatments resulted in a reduction in serine, potentially identifying this amino acid as a marker for stress in this species. A number of metabolic changes, especially those in the sugar and polyol pools, are adaptations that have potential to enhance survival during both cold and desiccation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins.

Intense ultraviolet radiation, coupled with frequent bouts of freezing-thawing and anoxia, have the potential to generate high levels of oxidative stress in Antarctic organisms. In this study, we examined mechanisms used by the Antarctic midge, Belgica antarctica, to counter oxidative stress. We cloned genes encoding two key antioxidant enzymes, superoxide dismutase (SOD) and catalase (Cat), an...

متن کامل

Osmoregulation and salinity tolerance in the Antarctic midge, Belgica antarctica: seawater exposure confers enhanced tolerance to freezing and dehydration.

Summer storms along the Antarctic Peninsula can cause microhabitats of the terrestrial midge Belgica antarctica to become periodically inundated with seawater from tidal spray. As microhabitats dry, larvae may be exposed to increasing concentrations of seawater. Alternatively, as a result of melting snow or following rain, larvae may be immersed in freshwater for extended periods. The present s...

متن کامل

Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica.

Adaptations to low moisture availability are arguably as important as cold resistance for polar terrestrial invertebrates, especially because water, in the form of ice, is biologically inaccessible for much of the year. Desiccation responses under ecologically realistic soil humidity conditions--those close to the wilting points of plants [98.9% relative humidity (RH)]--have not previously been...

متن کامل

Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.

Rapid cold-hardening (RCH) is well known to increase the tolerance of chilling or cold shock in a diverse array of invertebrate systems at both organismal and cellular levels. Here, we report a novel role for RCH by showing that RCH also increases freezing tolerance in an Antarctic midge, Belgica antarctica (Diptera, Chironomidae). The RCH response of B. antarctica was investigated under two di...

متن کامل

Survival and energetic costs of repeated cold exposure in the Antarctic midge, Belgica antarctica: a comparison between frozen and supercooled larvae.

In this study, we examined the effects of repeated cold exposure (RCE) on the survival, energy content and stress protein expression of larvae of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae). Additionally, we compared results between larvae that were frozen at -5°C in the presence of water during RCE and those that were supercooled at -5°C in a dry environment. Although >95% ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of insect physiology

دوره 54 4  شماره 

صفحات  -

تاریخ انتشار 2008